找软件用软件,到华军软件园!
当前位置:华军软件园 > 华军新闻网 > 资讯中心 > 科技资讯>从数学概念入手,一文带你理解感知机是什么

从数学概念入手,一文带你理解感知机是什么

2017-03-15 14:06:36  [  华军资讯   ]   作者:
漩涡鸣人
导读:神经网络类型众多,其中最为重要的是多层感知机。 多层感知机中的特征神经元模型称为感知机。

软家园AI科技评论按:神经网络已经成为了人工智能最火的领域,是源于大脑结构的计算模型。 属于信息处理结构,其最重要的属性是其从数据中学习的能力。这些技术在营销、工程等诸多领域取得了巨大的成功。

感知机是一种人工神经网络,由Frank Rosenblatt于1957年发明,他也提出了相应的感知机学习算法。

神经网络类型众多,其中最为重要的是多层感知机。多层感知机中的特征神经元模型称为感知机。本文将解释从数学概念上理解感知机模型,.net/">华军软件园编译。

感知机元件

神经元是神经网络的主要组成部分,感知机是最常用的模型。如下图所示。

从数学概念入手,一文带你理解感知机是什么

上述神经元包含下列元素:

    输入(x1,...,xn)。

    偏移b和突触权重(w1,...,wn)。

    组合函数c(·)。

    激活函数a(·)。

    输出y。

    如下图所示的神经元有三个输入。它将输入集合x =(x1,x2,x3)变换为单个输出y。

    从数学概念入手,一文带你理解感知机是什么

    上图中的神经元,包含下列元素:

      输入(x1,x2,x3)。

      神经元参数,为集合b = -0.5和w =(1.0,-0.75,0.25)。

      组合函数c(·),将输入与偏移和突触权重合并

      激活函数设置为双曲正切tanh(·),通过该组合生成神经元输出。

      输出y。

      神经元参数

      神经元参数由偏移和一组突触权重组成。

        偏置b是实数。

        突触权重w =(w1,...,wn)是大小为输入数量的向量。

        因此,该神经元模型中的参数的总数是1 + n,其中n是神经元中输入的数量。

        上图所示的感知机。其神经元模型包含1个偏移和3个突触权重:

          偏移为b = -0.5。

          突触权重向量是w =(1.0,-0.75,0.25)。

          该神经元参数数量为1 + 3 = 4。

          组合功能

          组合函数通过输入向量x生成组合值或净输入c。感知机中,组合由偏移加上突触权重和输入的线性组合计算得到,

          c = b +Σwi·xii = 1,...,n。

          注意,偏置对激活函数净输入的增减取决于其正负。偏移有时被表示为连接到固定为+1的输入的突触权重。

          上例中的神经元,输入向量x =(-0.8,0.2,-0.4)的感知机的组合值为

          c = -0.5 +(1.0·-0.8)+(-0.75·0.2)+(0.25·-0.4)= -1.55

          激活功能

          激活函数通过组合来定义神经元的输出。实践当中,可以考虑多种适用的激活函数。三个最常用的是逻辑,双曲正切和线性函数。在此不考虑不可导出的其他激活函数,如阈值。

          逻辑函数具有S形形状。该激活是单调的新月形函数,其在线性和非线性行为之间表现出良好的平衡。定义为

          a = 1 /(1 + exp(-c))

          逻辑函数如下图所示。

          从数学概念入手,一文带你理解感知机是什么

          逻辑函数的取值区间为(0,1)。 特别适合分类应用,因为输出可以根据概率解释。

          双曲正切也是神经网络领域中常用的S形函数。它非常类似于逻辑函数。主要区别是双曲正切的取值区间为(-1,1)。双曲正切由

          a = tanh(c)

          双曲正切如下图所示。

          从数学概念入手,一文带你理解感知机是什么

          超实体正切函数非常适用于近似应用。

          线性激活函数满足下列等式

          a = c

          因此,具有线性激活函数的神经元的输出等于其组合。线性激活函数图形如下图所示。

          线性激活函数也非常适用于近似应用。

          本文给出的例子中,组合值为c = -1.55。因该函数为双曲正切,所以该神经元的激活如下:

          a = tanh(-1.55)= -0.91

          输出功能

          输出计算是感知机中最重要的功能。对于特定的一组神经元输入信号,通过组合生成输出信号。输出函数以组合和激活函数的组成表示。下图说明了感知机中信息是如何传播的。

          从数学概念入手,一文带你理解感知机是什么

          因此,神经元的输出最终表述为其输入的函数

          y = a(b + w·x)

          本文中的感知机,如果输入x =(-0.8,0.2,-0.4),输出y如下

          y = tanh(-0.5 +(1.0·-0.8)+(-0.75·0.2)+(0.25·-0.4))= tanh(-1.55)= -0.91

          显而易见,输出函数合并了组合和激活函数。

          结论

          神经元是生物神经系统中单个神经元行为的数学模型。

          单个神经元可以完成一些非常简单的学习任务,但是许多神经元构成的网络威力巨大。人工神经网络的结构是指神经元的数量和它们之间的连接关系。下图显示了神经元的前馈网络架构。

          从数学概念入手,一文带你理解感知机是什么

          虽然通过本文读者能够了解感知机的功能,但是存在特征各异并且用途不同的神经元模型。如可伸缩神经元,主成分神经元,非伸缩神经元或概率神经元。上图中,可伸缩神经元为黄色,非伸缩神经元为红色。

          从数学概念入手,一文带你理解感知机是什么
标签:神经元,函数,感知
点个赞()
上一篇:

Siri将会说上海话,但你知道苹果是怎么教会它的吗?


下一篇:

用充满爱与和平的GUNs挑战GANs?我可能看了篇假论文


网友评论(查看全部条评论)

用户名: 密码:
验证码:
匿名发表
有话不说,憋着多难受啊。
'); })();